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We present an exact field theoretical representation of an ionic solution made of
charged hard spheres. The action of the field theory is obtained by performing a
Hubbard–Stratonovich transform of the configurational Boltzmann factor. It is
shown that the Stillinger–Lovett sum rules are satisfied if and only if all the field
correlation functions are short range functions. The mean field, Gaussian and
two-loops approximations of the theory are derived and discussed. The mean
field approximation for the free energy constitutes an exact lower bound for the
exact free energy, while the mean field pressure is an exact upper bound. The
one-loop order approximation is shown to be identical with the random phase
approximation of the theory of liquids. Finally, at the two-loop order and in the
pecular case of the restricted primitive model, one recovers results obtained in
the framework of the mode expansion theory.
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1. INTRODUCTION

Various ionic systems including electrolyte solutions, molten salts, and
colloids can be studied with a good approximation in the framework of the
so-called primitive model (PM) which consists in a mixture of M species of
charged hard spheres (HS) which differ by their respective charges and (or)
diameters. (1) Of special interest is the restricted primitive model (RPM)
where M=2, the hard spheres have all the same diameter, and the cations
and anions bear opposite charges ± q. In many instances, we shall also
consider the special primitive model (SPM), where the number M of



species as well as the charges are arbitrary but all the ions have the same
diameter s.

In the two first parts of this work, published some years ago and
hereafter referred to as I and II, we have established an exact field theore-
tical representation of the RPM. (2, 3) The action of this field theory, which
is obtained by applying the Kac–Siegert–Stratonovich–Hubbard–Edwards
(KSSHE) (4–9) transform to the Coulomb potential, looks like the sine-
Gordon action to which it reduces in the limit of point-like ions, (10–12) hence
the slightly abusive title of this series of papers. Nowadays we prefer the
acronym KSSHE to christen the action. The extended sine-Gordon action
derived in paper I for the RPM is obtained here for a general PM. The
regularization of the Coulomb potential which is required to define prop-
erly the KSSHE transform is obtained by a smearing of the charge over
the HS volume. A more general treatment where a part of the Coulomb
interaction is incorporated in the reference system is discussed in the review
of Brydges and Martin. (11)

The developments of refs. I and II are based on a cumulant expansion
of the grand partition function reorganized in ascending powers of either
the fugacity or the inverse temperature. In this way one can obtain the
exact low fugacity and high temperature expansions of the pressure and the
free energy of the RPM. Of course the expressions obtained in that manner
are already known from the theory of liquids and were derived years ago
in the framework of Mayer graph expansions. (13, 14) In the present paper
we proceed differently. After having obtained the KSSHE action for the
general PM (see Section 2), we reorganize the cumulant expansion by
grouping some classes of Feynman diagrams. The resulting loopwise
expansion is explicitly computed up to order two in the number of loops.
In the case of the RPM, the two-loop order free energy turns out to coin-
cide with an expression derived more than thirty years ago by Chandler
and Andersen (15) in the framework of the so-called mode expansion
theory. (16, 17) Reorganizing the loop-expansion in ascending powers of the
inverse temperature gives back the high-temperature expansions of paper II
and ref. 14.

Our paper is organized in the following way. In Section 2 we show
how to construct a well-defined KSSHE transform by regularizing the
Coulomb potential at short distances by means of a smearing of the
charges inside the volumes of the HS. In Section 3 we establish the general
relations between the charge correlation functions and the correlations of
the KSSHE field. From the known asymptotic behavior of the former one
can deduce that of the latter. The conclusion, which is detailed at length in
Section 4, is that the n-body correlations of the KSSHE field are short-
ranged functions; stated otherwise, the KSSHE field is a noncritical field.
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The so-called Stillinger–Lovett sum rules, both for the homogeneous (18) and
the inhomogeneous fluid (19) emerge as a consequence of this behavior. In
Section 5 the mean field (MF) level of the theory is studied in detail. The
MF free energy bAMF is shown to be a strictly convex functional of the M
partial densities and to constitute a rigorous lower bound of the exact free
energy. The former property excludes a fluid–fluid transition at the MF
level while the latter serves to define an optimized MF free energy by
maximizing bAMF with respect to the variations of the smearing functions.
An explicit expression of the optimized bAMF is obtained in the case of
an homogeneous fluid. From the MF solution for the inhomogeneous
system we also deduce the expressions of the n-body correlation and vertex
functions of the homogeneous system in the Gaussian approximation. (20)

This Gaussian approximation is discussed in Section 6 and shown to be
equivalent to the random phase approximation (RPA) of the theory of
liquids. (1, 21) Finally, a two-loop order calculation is performed in Section 7.
The resulting expression for the the free energy of the RPM is shown to be
identical with that obtained by Chandler and Andersen (15) in the frame-
work of the first version of the mode expansion theory. Conclusions are
drawn in Section 8.

Note that some technical details and disgressions have been skipped in
the final version of the paper; they can be found in an extended version of
this work which can be consulted at the arXiv:cond-mat data basis. (22)

2. THE KSSHE TRANSFORM

2.1. The Model

We shall consider only the three dimensional (3D) version of the
(PM), i.e., a mixture of M species of charged hard spheres. (1) The ions of
the species a (a=1,..., M) are characterized by their diameter sa and their
electric charge qa. The molecular structure of the solvent is ignored and it is
treated as a continuum, the dielectric constant of which has been absorbed
in the definition of the charges qa. The solution is made of both positive and
negative ions so that the electroneutrality in the bulk can be satisfied
without adding any unphysical neutralizing background to the system.
The particles occupy a domain W … R3 of volume W of the ordinary space
with free boundary conditions. Only configurations w — (N1; rF1

1,..., rF1
N1

| · · ·
|Na; rF a

1 ,..., rF a
Na

| NM; rFM
1 ,..., rFM

NM
) (rF a

ia
¥ W) without overlaps of the spheres,

i.e., such that ||rF a
ia

− rFb
ib

|| \ (sa+sb)/2 do contribute to the partition or
grand partition functions. In such a configuration, the charge qa of each
ion can be smeared out inside its volume according to a spherically sym-
metric distribution qaya(r) without altering the configurational energy as a
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consequence of Gauss theorem. The distribution ya(r) is a priori arbitrary,
provided it satisfies the following properties:

ya(r)=0 if r \ s̄a — sa/2, (2.1a)

F d3rF ya(r)=1. (2.1b)

The electrostatic interaction energy of two charge distributions ya and yb

the centers of which are located at the points rF1 and rF2 of W respectively
will be noted wa, b(1, 2). It reads as

wa, b(1, 2)=F d3r1Œ F d3r2Œ ya(||rF1 − rF1Œ ||) vc(||rF1Œ − rF2Œ ||) yb(||rF2Œ − rF2 ||),

— ya(1, 1Œ) vc(1Œ, 2Œ) yb(2Œ, 2), (2.2)

where vc(r)=1/r is the Coulomb potential. Note that in this paper, sum-
mation over repeated, either discrete or continuous indices will always be
meant (except if explicitly stated otherwise). As a consequence of Eqs. (2.1)
and of Gauss theorem wa, b(1, 2)=1/r12 for r12 \ s̄a+s̄b. Note that the
Fourier transform w̃a, b(k) of the interaction takes the simple form

w̃a, b(k)=
4p

k2 ỹa(k) ỹb(k), (2.3)

which diverges for k Q 0 as 4p/k2 since ỹa(0)=1, as follows from
Eq. (2.1b). Finally we shall denote by

va, b(1, 2)=qaqb wa, b(1, 2) (2.4)

the pair interaction of two ions.
The electrostatic potential energy of the configuration w times the

inverse temperature b=1/kT can be written as

bUel(w)=
b

2
r1C(1) vc(1, 2) r1C(2) − NanS

a , (2.5)

where r1C(1) is the microscopic charge density in the configuration w at the
point rF1 and nS

a is the self-energy of the charge distribution qaya(r). In
general, for a sufficiently regular distribution ya(r), the self-energy

nS
a =

bq2
a

2
wa, a(0)=

bq2
a

2
F d Kk

4p

k2 ỹa(k)2, (2.6)
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where d Kk — d3kF/(2p)3, is a well-defined positive and finite quantity. Of
course nS

a diverges for point-like charges which makes the KSSHE trans-
form, to be introduced in the next section, an ill-defined object in that case.
The microscopic smeared charge density r1C(rF) which enters Eq. (2.5) reads

r1C(1)=qa ya(1, 1Œ) r1a(1Œ), (2.7)

where

r1a(1)= C
Na

ia=1
d3(rF1 − rF a

ia
) (2.8)

is the microscopic number density of the species a at the point rF1.
It will prove convenient to make use of Dirac’s notations for matrix

elements and scalar products and to rewrite the energy (2.5) as

1
2 r1C(1) vc(1, 2) r1C(2)=1

2 Or1C | vc |r1CP,

=Or1C | V1P, (2.9)

where V1 (1) — r1C(1Œ) vc(1Œ, 1) denotes the microscopic electric potential at
the point rF1 in the configuration w. Of course V1 is solution of the 3D
Poisson equation, i.e.,

D1V1 (1)=−4pr1C(1). (2.10)

2.2. The KSSHE Transform of the Boltzmann Factor

The Boltzmann factor in the configuration w is equal to

exp(− bU(w))=exp(− bUHS(w)) exp(− bUel(w)), (2.11)

where UHS(w) denotes the contribution of the hard cores to the configura-
tional energy. We perform now a KSSHE transform in order to rewrite
Eq. (2.11) as (2–12)

exp(− bU(w))=exp(− bUHS(w)) exp(Na nS
a )Oexp(ib1/2Or1C | jP)Pvc

,
(2.12)

where the brackets O · · ·Pvc
denote Gaussian averages over the real scalar

field j(rF), i.e.,

O · · ·Pvc
— N−1

vc
F Dj · · · exp(− 1

2 Oj| v−1
c |jP),

Nvc
— F Dj exp(− 1

2 Oj| v−1
c |jP), (2.13)
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where

v−1
c (1, 2)=−

1
4p

D1d(1, 2) (2.14)

is the inverse of the positive operator vc(1, 2). Therefore one has, after an
integration by parts

Nvc
=F Dj exp 1 −

1
8p

F
W

d3rF(NFj)22 (2.15)

The functional integrals which enter Eqs. (2.13) and (2.15) can be given a
precise meaning when grounded perfect conductor boundary conditions
(BC) are adopted; periodic BC’s also work if only neutral configurations are
considered, we refer the reader to the literature for more details. (2, 11, 20, 23, 24)

It will be convenient to write

Or1C | jP=Or1a | faP, (2.16)

where the smeared field fa is defined as

fa(1) — b1/2qaya(1, 1Œ) j(1Œ). (2.17)

The field ifa(1) may thus be seen as an external one-body potential acting
on the particles of the species a; indeed, one can rewrite the Boltmann
factor (2.12) under the form

exp(− bU(w))=exp(− bUHS(w)) exp(Na nS
a )Oexp(iOr1a | faP)Pvc

,

=exp(− bUHS(w)) exp(Na nS
a )7exp 1 C

M

a=1
C
Na

ia=1
ifa(rF a

ia
)28

vc

.

(2.18)

2.3. The KSSHE Transform of the Grand Partition Function

Henceforward we shall work in the grand canonical (GC) ensemble.
We denote by ma the chemical potential of the species a and by ka(rF) the
external potential with which the particles of the species a interact even-
tually. According to a terminology due to J. Percus, (25) we shall define the
local chemical potential na(rF) as b(ma − ka(rF)). With these notations, the
GC partition function of the system takes the form
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X[{na}]= C
.

N1=0

1
N1!

· · · C
.

NM=0

1
NM!

F
W

d3rF1
1 · · · d3rFM

NM
exp(−bU(w))

× D
M

a=1
D
Na

ia=1
exp(na(rF a

ia
)). (2.19)

Grand canonical averages of dynamic variables A(w) will be noted
OA(w)PGC. Inserting the expression (2.18) of the Boltmann factor in
Eq. (2.19) one obtains the KSSHE representation of X

X[{na}]=OXHS[{n̄a+ifa}]Pvc
, (2.20)

where n̄a=na+nS
a and XHS[{n̄a+ifa}] is the GC partition function of a

mixture of bare hard spheres in the presence of the local chemical poten-
tials n̄a+ifa. The above result generalizes to the case of the PM the result
obtained in paper I for the restricted primitive model. It is also possible to
incorporate a part of the Coulomb interaction in the reference potential
which yields a more general expression than Eq. (2.20) as detailed in the
review of Brydges and Martin (cf. Eq. (2.29) of ref. 11). However, in the
liquid domain, the thermodynamics and correlations of this reference
system are, by contrast with those of the HS fluid, little known in general.
Relations similar to Eq. (2.20) have also been obtained and discussed for
neutral fluids. (5, 8, 26, 27)

To make some contact with statistical field theory we introduce the
effective Hamiltonian (or action)

H[j]=1
2 Oj| v−1

c |jP− log XHS[{n̄a+ifa}], (2.21)

which allows us to recast X under the form

X[{na}]=N−1
vc

F Dj exp(−H[j]). (2.22)

It will be important in the sequel to distinguish carefully, besides the
GC averages O · · ·PGC, between two types of statistical field averages: the
already defined O · · ·Pvc

and the O · · ·PH that we define as

OA[j]PH —
> Dj exp(−H[j]) A[j]

> Dj exp(−H[j])
. (2.23)

With these definitions in mind one notes that for an arbitrary functional
A[j] one has the relation

OA[j]PH=
OA[j] XHS[{n̄a+ifa}]Pvc

O XHS[{n̄a+ifa}]Pvc

. (2.24)
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3. CORRELATION FUNCTIONS

3.1. Zoology

The ordinary and truncated (or connected) density correlation func-
tions will be defined in this paper as (28, 29)

G (n)
a1 · · · an

[{na}](1,..., n)=7 D
n

1=1
r1a i

(i)8
GC

,

=X[{na}]−1 dnX[{na}]
dna1

(1) · · · dnan
(n)

,

G (n) T
a1 · · · an

[{na}](1,..., n)=
dn log X[{na}]

dna1
(1) · · · dnan

(n)
.

(3.1)

Our notation emphasizes the fact that the G (n)
a1 · · · an

(truncated or not) are
functionals of the local chemical potentials na(rF) and functions of the
coordinates (1,..., n) — (rF1,..., rFn). Note however that, in the remainder of
the paper, we shall frequently omit to quote the functional dependence of
G (n)

a1 · · · an
upon the na when no ambiguity is possible. In standard textbooks

of liquid theory (1) the n-body correlation functions are more frequently
defined as functional derivatives of X or log X with respect to the activities
za=exp(na) rather than with respect to the local chemical potentials. This
yields differences involving delta functions. For instance for n=2 and for a
homogeneous system one has

G (2)
ab (1, 2)=rarb gab(r12)+rada, bd(1, 2),

G (2) T
ab (1, 2)=rarbhab(r12)+rada, bd(1, 2),

(3.2)

where ra is the equilibrium number density of the species a and gab(r) the
usual pair distribution function; finally hab=gab − 1.

The charge correlations will play an important role in subsequent
developments. They are defined as

G (n)
C (1,..., n)=7 D

n

1=1
r1C(i)8

GC
. (3.3)

It follows from the definition (2.7) of the smeared density of charge r1C that
Eq. (3.3) can be rewritten alternatively

G (n)
C (1,..., n)=qa1

· · · qan
ya1

(1, 1Œ) · · · yan
(n, nŒ) G (n)

a1 · · · an
(1Œ,..., nŒ). (3.4)
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Clearly the operator

G(1) — ib1/2qa ya(1, 1Œ)
d

dna(1Œ)
(3.5)

is the generator of the charge correlations for we have clearly

inbn/2G (n)
C (1,..., n)=X−1G(1) · · · G(n) X. (3.6)

The truncated charge correlations can thus be defined according to

inbn/2G (n) T
C (1,..., n)=G(1) · · · G(n) log X. (3.7)

On the one hand

G (n) T
C (1,..., n)=qa1

· · · qan
ya1

(1, 1Œ) · · · yan
(n, nŒ) G (n) T

a1 · · · an
(1Œ,..., nŒ), (3.8)

and, in the other hand (23, 28, 29)

G (n) T
C (1,..., n)=G(n) T

C (1,..., n) − C D
m < n

G (m) T
C (i1,..., im), (3.9)

where the sum of products is carried out over all possible partitions of the
set (1,..., n) into subsets of cardinality m < n.

The functions G (n)
C (resp. G (n) T

C ) are related by a hierarchy of equations
most conveniently written with the help of the operator G defined at
Eq. (3.5). One establishes easily that (22)

G(n+1) G (n) T
C (1,..., n)=ib1/2 G (n+1) T

C (1,..., n+1), (3.10)

which is valid for all n \ 0 with the convention that G (n=0) T
C — log X and

that

G(n+1) G (n)
C (1,..., n)=ib1/2[G (n+1)

C (1,..., n+1) − rC(n+1) G (n)
C (1,..., n)]

(3.11)

where rC — G (n=1)
C is the equilibrium charge density. The relations (3.11)

are valid for all n \ 0 with the convention that G (n=0)
C — 1.

In the field theoretical representation of the PM the field correlation
functions play a key role. They are defined as

G (n)
j (1,..., n)=Oj(1) · · · j(n)PH, (3.12a)

G (n) T
j (1,..., n)=G (n) T

j (1,..., n) − C D
m < n

G (m) T
j (i1,..., im). (3.12b)
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Of course the G (n)
j , as the charge correlation functions, are functionals of

the local chemical potentials. The hierarchy for the G (n)
j reads as follows (22)

G(n+1) G (n)
j (1,..., n)

=
− Dn+1

4p
[G (n+1)

j (1,..., n+1) − G (n)
j (1,..., n) Oj(n+1)PH]

− C
n

j=1
d(n+1, j) G (n − 1)

j (1,..., j − 1, j+1,..., n), (3.13)

which is valid for all n \ 1 with the convention G (0)
j — 1. And for the G (n) T

j

one finds (22)

G(2) G (1)
j (1)=

− D2

4p
G (2) T

j (1, 2) − d(1, 2),

G(n+1) G (n) T
j (1,..., n)=

− Dn+1

4p
G (n+1) T

j (1,..., n+1) (n \ 2). (3.14)

3.2. Relations between the Charge and Field Correlation Functions

3.2.1. The Density and Charge Correlation Functions as Statistical
Field Averages

It follows from the definition (3.1) of G (n)
a1 · · · an

and from the KSSHE
representation (2.20) of the grand partition function that we have

G (n)
a1 · · · an

[{na}](1,..., n)

=X−1N−1
vc

F Dj exp(− 1
2 Oj| v−1

c |jP)
dnXHS[{n̄a+ifa}]
dna1

(1) · · · dnan
(n)

,

=X−1OXHSG (n)
HS, a1 · · · an

[{n̄a+ifa}](1,..., n)Pvc
, (3.15)

where G (n)
HS, a1 · · · an

[{n̄a+ifa}](1,..., n) denotes the density correlation func-
tion of the reference HS fluid in the presence of the local chemical poten-
tials {n̄a+ifa}. Thence, making use of Eq. (2.24)

G (n)
a1 · · · an

[{na}](1,..., n)=OG (n)
HS, a1 · · · an

[{n̄a+ifa}](1,..., n)PH. (3.16)

Equation (3.16), which extends to ionic mixtures a relation that we derived
elsewhere for simple non-charged fluids, (27) although aesthetic is not
very useful since the hard sphere correlations G (n)

HS, a1 · · · an
are complicated
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functionals of the field j. However the case n=1 is of some interest. In
that case Eq. (3.16) says that

rb[{na}](1)=OrHS, b[{n̄a+ifa}](1)PH, (3.17)

It follows readily from the expression (3.4) of the charge correlation
function that we also have

G (n)
C [{na}](1,..., n)=OG (n)

HS, C[{n̄a+ifa}](1,..., n)PH, (3.18)

where

G (n)
HS, C(1,..., n)=qa1

· · · qan
ya1

(1, 1Œ) · · · yan
(n, nŒ) G (n)

HS, a1 · · · an
(1Œ,..., nŒ).

(3.19)

Specializing Eq. (3.18) for n=1 we note that

rC[{na}](1)=OrHS, C[{n̄a+ifa}](1)PH, (3.20)

where

rHS, C(1)=qaya(1, 1Œ) rHS, a(1Œ). (3.21)

3.2.2. Relations between G(n)
C and G(n)

j

It follows readily from the expression (3.7) of G (n)
C and from the

KSSHE representation (2.20) of the grand partition function that

inbn/2G (n)
C [{na}](1,..., n)=X−1[{na}] N−1

vc
F Dj exp(− 1

2 Oj| v−1
c |jP)

× G(1) · · · G(n) XHS[{n̄a+ifa}]. (3.22)

At this point we make the remark that

dXHS[{n̄a+ifa}]
dj(1)

=
d ifa(1Œ)

dj(1)
dXHS[{n̄a+ifa}]

dna(1Œ)
,

=G(1) XHS[{n̄a+ifa}]. (3.23)

The relation (3.23) enables us to replace the operators G(i) which occur the
right hand side (RHS) of Eq. (3.22) by functional derivatives with respect
to the field j. Then, performing n functional integrations by parts (24, 27)

yields

inbn/2G (n)
C (1,..., n)=(−)n 7dn exp(− 1

2 Oj| v−1
c |jP)

dj(1) · · · dj(n)
8

H

. (3.24)

Sine-Gordon Theory of Classical Hard-Core Coulomb Systems 1471



The relation (3.24) can be used to obtain an explicit representation of G (n)
C

in terms of the field correlations as long as n is not too large. Let us first
consider the case n=1 in which Eq. (3.24) takes the simple form

D1Oj(1)PH=−4pib1/2rC(1). (3.25)

We thus obtain the Poisson equation, the solution of which is of course

Oj(1)PH=ib1/2V(1), (3.26)

where V(1) is the GC average of the configurational electric potential, i.e.,
V(1)=OV1 (1)PGC.

In the case n=2 Eq. (3.24) says that

bG (2)
C (1, 2)=

− 1
4p

D1d(1, 2) −
1

(4p)2 D1D2G (2)
j (1, 2), (3.27)

or, by reverting the equation

G (2)
j (1, 2)=vc(1, 2) − bvc(1, 1Œ) G (2)

C (1Œ, 2Œ) vc(2Œ, 2). (3.28)

Equations (3.27) and (3.28) extend to electrolyte solutions relations
obtained recently for neutral fluids. (27) Equations of this type were also
derived by Ciach and Stell in the framework of a heuristic field theory of
the RPM. (30)

By combining Eqs. (3.25) and (3.27) one can show easily that the
truncated two-body charge correlation function satisfies to a similar rela-
tion, i.e.,

bG (2) T
C (1, 2)=

− 1
4p

D1d(1, 2) −
1

(4p)2 D1D2G (2) T
j (1, 2). (3.29)

In the case n=3 Eq. (3.24) yields an awkward expression for G (3)
C .

However the truncated 3-body charge correlation function takes the simple
form

ib3/2G (3) T
C (1, 2, 3)=

1
(4p)3 D1D2D3G (3) T

j (1, 2, 3), (3.30)

which can be obtained by brute force calculation. The above result suggests
that there are simple relations between G (n) T

C and G (n) T
j for values of n \ 3.

Indeed, let us apply the operator G(2) · · · G(3) (n \ 3) to both sides of
Eq. (3.25). Then, making use of the hierarchy equations satisfied by the
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G (n) T
C and the G (n) T

j (cf. Eqs. (3.10) and (3.14)) one gets immediately the
aesthetic generic formula

inbn/2G (n) T
C (1,..., n)=

(−1)n

(4p)n D1 · · · DnG (n) T
j (1,..., n) (-n \ 3). (3.31)

3.2.3. Correlations of the Electric Potential

It is obvious that

OV1 (1) · · · V1 (n)PGC=vc(1, 1Œ) · · · vc(n, nŒ) G (n)
C (1Œ,..., nŒ),

OV1 (1) · · · V1 (n)PT
GC=vc(1, 1Œ) · · · vc(n, nŒ) G (n) T

C (1Œ,..., nŒ).
(3.32)

Combining the above relations with those obtained in Section 3.2.2 one
gets

ib1/2OV1 (1)PGC=Oj(1)PH, (3.33a)

bOV1 (1) V1 (2)PT
GC=vc(1, 2) − G (2) T

j (1, 2), (3.33b)

inbn/2OV1 (1) · · · V1 (n)PT
GC=G (n) T

j (1,..., n) (-n \ 3). (3.33c)

What can be learned from the above relations is the subject of the next
section.

4. STILLINGER–LOVETT SUM RULES

A salient property of 3D ionic liquids is the screening effect. To
paraphrase Ph. Martin, this type of fluid ‘‘in thermal equilibrium does not
tolerate any charge inhomogeneity over more than a few intermolecular
distances.’’ (31) Even at the liquid-vapor critical point where the correlation
length associated with the fluctuations of density diverges it is believed, and
has been checked by means of numerical simulations in the case of the
RPM, (32) that the correlation length associated with the fluctuations of
charge remains finite. From the existence of screening it is possible to
deduce sum rules for the charge correlation functions for both homo-
geneous and inhomogeneous systems, the so-called Stillinger–Lovett (SL)
sum rules. (18, 19, 33) As pointed out by B. Jancovici, these rules may be
rederived under the sole assumption that the system behaves macroscopi-
cally as a conductor in the sense that ‘‘the laws of macroscopic electro-
statics are assumed to be obeyed for length scales large compared to the
microscopic characteristic lengths of the model.’’ (34) We examine below
how the SL rules can be deduced from simple hypothesis on the behavior
of the KSSHE field correlation functions.
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Let us first consider a homogeneous system. In this case OjPH is a
constant as well as are the densities ra and the smeared density of charge rC.
It follows then from Eq. (3.25) that the smeared density rC=0. This is
nothing but the usual electroneutrality condition since rC=raqa ỹa(0) can
be identified with the usual local charge density for ỹa(0)=1 (property
(2.1b) of the smearing function ya ). Therefore, in the framework of our
formalism, the electroneutrality condition

raqa=0 (4.1)

is automatically satisfied for an arbitrary set of chemical potentials {na},
a well known property of ionic fluids. (11) Note that Eq. (4.1) implies that
there are only M − 1 independent chemical potentials.

The correlations of the electric potential has been studied by various
approaches and asymptotically one has

bOV1 (1) V1 (2)PT
GC=vc(1, 2), (4.2a)

OV1 (1) · · · V1 (n)PT
GC=0. (4.2b)

It must be stressed that these expressions are valid for relative distances
large compared to the microscopic characteristic lengths of the system and
if the correlations decay fast enough or, equivalently, if the system behaves
as a macroscopic conductor. (11, 31, 34, 35) The comparison of these asymptotic
behaviors with the exact relations (3.33) derived in Section 3.2.3 entails that
the truncated KSSHE field correlation functions G (n) T

j are short range
functions; stated otherwise, the KSSHE field is a noncritical field. Conver-
sely, this property being taken as given, we show now that one can infer the
SL rules.

We consider now a nonhomogeneous system and we take the Laplacian
of Eq. (3.33b). We get

bOr1C(1) V1 (2)PT
GC=d(1, 2)+

1
4p

D1G (2) T
j (1, 2). (4.3)

Let us integrate Eq. (4.3) over rF1. With the hypothesis that G (2) T
j (1, 2) is

short range the integration of the Laplacian gives zero by an application of
Green’s theorem. Therefore

b F d(1)Or1C(1) V1 (2)PT
GC=1 (4.4)

which is the Carnie–Chan sum rule. (19) In the case of a homogeneous
system, the Carnie–Chan sum rule is equivalent to the SL sum rule. (34) Let
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us retrieve these sum rules in our framework. We start with Eq. (3.29) for a
homogeneous system. In this case G (2) T

C (1, 2) — G (2) T
C (rF=rF1 − rF2)) and we

have

− 4pbG (2) T
C (rF)=Dd(rF) −

1
4p

DDG (2) T
j (rF). (4.5)

With the hypothesis that G (2) T
j (1, 2) is a short range function the integra-

tion over rF gives zero, i.e.,

F d3rF G (2) T
C (rF)=0 (4.6)

which is the first SL rule. (18) Similarly, after integration by parts

4pb F d3rF r2G (2) T
C (rF)=−6+

6
4p

F d3rF DG (2) T
j (rF). (4.7)

If G (2) T
j (rF) is a short range function then the integral in the RHS vanishes

and we are left with the second SL sum rule

2pb

3
F d3rF r2G (2) T

C (rF)=−1. (4.8)

We want to precise that the results derived in this section are not valid
for 2D systems which can undergo a Kosterlitz–Thouless transition. (36) In
the low-temperature KT phase of a 2D PM, the SL rules are violated and
the sine-Gordon field should exhibit long range correlations with an alge-
braic decay. In this case, j is a critical field and OjP is related to the order
parameter of the KT transition. (37)

5. THE MEAN FIELD THEORY

5.1. Mean Field Equations

We define the MF level or saddle point approximation of the theory
by the equation

XMF[{na}] — exp(−H(j̄)), (5.1)

where, at j=j̄, the action H is stationary. It follows from the expression
(2.21) of H that the stationarity condition

dH

dj(rF)
:
j̄

=0 (5.2)
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may be rewritten as

D1j̄(1)= − 4pib1/2rHS, C[{n̄a+if̄a}](1), (5.3a)

f̄a(1)=qaya(1, 1Œ) j̄(1Œ). (5.3b)

Two comments are in place here. Firstly, it can be pointed out that
Eq. (5.3a) is very similar to the well known Poisson–Boltzmann equa-
tion. (38) Secondly, it is instructive to compare Eq. (5.3a) with the following
exact relation, easily deduced from Eqs. (3.20) and (3.25)

D1Oj(1)PH=−4pib1/2OrHS, C[{n̄a+ifa}](1)PH. (5.4)

One notes that Eq. (5.3a) could have been guessed from the exact Eq. (5.4)
with the usual assumption of an absence of field correlations at the MF
level.

5.2. The Mean Field Grand Canonical Free Energy

The MF grand potential is easily obtained by substituting j̄ in
Eq. (5.1) with the result

log XMF[{na}]

=log XHS[{n̄a+if̄a}] −
1
2
Oj̄| v−1

c |j̄P

=log XHS[{n̄a+if̄a}]+
b

2
OrHS, C[{n̄a+if̄a}]| vc |rHS, C[{n̄a+if̄a}]P.

(5.5)

The MF number density of species c is obtained by taking the functional
derivative of log XMF[{na}] with respect to the local chemical potential nc.
On the one hand we have

d log XHS[{n̄a+if̄a}]
dnc(1)

=rHS, c[{n̄a+if̄a}](1)+rHS, b[{n̄a+if̄a}](1Œ)
dif̄b(1Œ)
dnc(1)

=rHS, c[{n̄a+if̄a}](1)+ib1/2rHS, C[{n̄a+if̄a}](1Œ)
dj̄(1Œ)
dnc(1)

, (5.6)
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and, in the other hand

d

dnc(1)
1
2
Oj̄| v−1

c |j̄P=−
dj̄(1Œ)
dnc(1)

1
4p

D1Œj̄(1Œ). (5.7)

Substracting Eqs. (5.6) and (5.7) and making use of the stationarity condi-
tion (5.3a) gives us

rMF, c(1)=rHS, c[{n̄a+if̄a}](1), (5.8)

from which we infer the expression of the MF charge density:

rMF, C(1)=rHS, C[{n̄a+if̄a}](1). (5.9)

In the case of a homogeneous system the MF KSSHE field j̄ is uniform
and f̄a reduces to f̄a=b1/2qaj̄ since ỹa(0)=1. Moreover, in this case, the
MF equation (5.3a) takes the form of the charge neutrality condition

rMF, C — qa rMF, a=0, (5.10)

where rMF, a=rHS, a[{n̄a+ib1/2qaj̄}]. Therefore j̄ is an imaginary number
which adjusts itself in such a way that the charge neutrality condition (5.10)
is satisfied. For instance for a RPM with n1=n2 one has j̄=0, while for a
binary SPM (M=2) one finds, with the same hypothesis on the chemical
potentials, that j̄=−i `b log(|q2/q1 |)/(q1 − q2).

The MF grand canonical free energy AMF is defined as the Legendre
transform of log XMF[{na}] with respect to the local chemical potentials
{na}. (25, 28, 39) Therefore one has

bAMF=OrMF, a | naP− log XMF[{na}]. (5.11)

When expressed in terms of its natural variables {rMF, a}, the functional
bAMF[{rMF, a}] reads as

bAMF[{rMF, a}]=bAHS[{rMF, a}] −OrMF, a | nS
aP+

b

2
OrMF, C | vc |rMF, CP,

(5.12)

as a short calculation will show. The functional AHS[{ra}] which appears
in the RHS of Eq. (5.12) is the exact GC free energy of an inhomogeneous
hard spheres mixture. As it is well known it is a convex functional of the
densities {ra}. (39, 40) On the other hand the quadratic form OrC | vc |rCP is
definite positive, therefore (strictly) convex. The last contribution to AMF,
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i.e., the linear term Ora | naP, will not change our conclusion that
AMF[{ra}] is a convex functional of the densities {ra}. Thence one has, for
all 0 [ l [ 1

AMF[{lra+(1 − l) r −

a}] [ l AMF[{ra}]+(1 − l) AMF[{r −

a}]. (5.13)

Since AMF[{ra}] is convex then its Legendre transform exists and is
also convex. Of course, the Legendre transform being involutive, it must be
identified with log XMF[{na}]. Therefore one has (39)

bAMF[{ra}]=sup
{na}

(Ora | naP− log XMF[{na}]), (5.14a)

log XMF[{na}]=sup
{ra}

(Ora | naP− bAMF[{ra}]). (5.14b)

Some comments are in order. Firstly, assuming that a mixture of
hard spheres cannot undergo a liquid-liquid transition (liquid-vapor or
dimixion) (1) one can safely conclude that AHS[{ra}] is a strictly convex
functional in the fluid region. As the sum of two strictly convex functionals
(cf. Eq. (5.12)) the MF free energy functional AMF[{ra}] is also strictly
convex in the fluid region as is the Poisson–Boltzmann functional. (41) In
Eq. (5.13) the inequality can thus be replaced by a strict inequality for
0 < l < 1. An important consequence is that the solution the the MF equa-
tion (5.2) is unique for a given set of chemical potential {na} which rules
out the possibility of a fluid–fluid transition of the PM at the MF level.
Secondly, the charge neutrality condition (5.10) implies that for a homo-
geneous system the Helmoltz free energy per unit volume takes the (too
much) simple form

bfMF({ra}) —
bAMF

W
=bfHS({ra}) − ranS

a . (5.15)

where the charge neutrality condition raqa=0 has been imposed (otherwise
bfMF diverges to +.).

5.3. Mean Field Correlation Functions

5.3.1. General Case

It is the place here to recall that a necessary and sufficient condition
for the convexity of log XMF[{na}] and AMF[{ra}] is that their second
order functional derivatives are positive operators, i.e., (25, 39, 40)
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7dna
: d (2) log XMF

dna(1) dnb(2)
:dnb

8 > 0,

7dra
: d (2)bAMF

dra(1) drb(2)
:drb

8 > 0.

(5.16)

We stress that the inequalities (5.16) are strict in the fluid phase because the
two functionals log XMF[{na}] and AMF[{ra}] are both strictly convex.
The second order derivatives of log XMF with respect to the local chemical
potentials are the density correlation functions at the MF level:

GT
MF, ab[{na}](1, 2) —

d (2) log XMF

dna(1) dnb(2)
. (5.17)

Note that, since we consider only two-point functions in this section, we
have further economized the notation by dropping the subscript (2) in the
definition of GT

MF, ab. The second order derivatives of bAMF with respect
to the densities are related to the the two-points direct correlation func-
tions. (25, 29, 39) Define

C1MF, ab[{ra}](1, 2) — −
d (2)bAMF

dra(1) drb(2)
. (5.18)

In the terminology of statistical field theory C1MF, ab is minus the two-point
proper vertex; it is related to the usual direct correlation function cab of the
theory of liquids by the relation (39)

C1MF, ab(1, 2)=cMF, ab(1, 2) −
1

ra(1)
da, b d(1, 2). (5.19)

The strict convexity of the functionals log XMF[{na}] and bAMF[{ra}]
guarantees the existence and unicity of the functions GT

MF, ab and C1MF, ab.
Moreover the operators GT

MF, ab and − C1MF, ab are both strictly positive and
− C1MF, ab is the inverse of GT

MF, ab, i.e.,

− C1MF, ab(1, 2) GT
MF, bc(2, 3)=da, c d(1, 3), (5.20)

which, when reexpressed in terms of the functions hab and cab, takes the
familiar form of the Orstein–Zernike equation (1)

hMF, ab(1, 2)=cMF, ab(1, 2)+hMF, ac(1, 3) rc(3) cMF, cb(3, 2). (5.21)
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C1MF, ab(1, 2) is obtained readily from the expression (5.12) of the MF free
energy functional bAMF[{ra}] with the simple result

C1MF, ab(1, 2)=C1HS, ab(1, 2) − bqaqbwab(1, 2), (5.22)

where C1HS, ab(1, 2) is minus the exact two-point proper vertex of the refer-
ence HS fluid at the mean field densities {rMF, a}. Equation (5.22) implies
that for a homogeneous system and for r12 \ (s̄a+s̄b) the direct MF cor-
relation functions reads as

cMF, ab(r12)=cHS, ab(r12) − bqaqb/r12, (5.23)

which is nothing but the RPA closure of the theory of liquids. (1, 21)

The calculation of GMF, T
bc (1, 2) is more involved. Our starting point

will be the equation

GT
MF, ab(1, 2)=

drMF, a[{nc}](1)
dnb(2)

=
drHS, a[{n̄c+if̄c}](1)

dnb(2)
. (5.24)

Clearly rHS, a[{n̄c+if̄c}] depends upon nb directly but also through the
smeared mean fields f̄c; therefore one has

GT
MF, ab(1, 2)=

drHS, a[{n̄c+if̄c}](1)
dnb(2)

:
j̄

+
drHS, a[{n̄c+if̄c}](1)

dj̄(3)
:
nc

dj̄(3)
dnb(2)

=GT
HS, ab(1, 2)+ib1/2GT

MF, ac(1, 4) qcyc(4, 3)
dj̄(3)
dnb(2)

. (5.25)

Now, remarking that the stationarity condition (5.3a) implies that

dj̄(3)
dnb(2)

=ib1/2vc(3, 5) qdyd(5, 6) GT
MF, db(6, 2), (5.26)

one obtains

GT
MF, ab(1, 2)=GT

HS, ab(1, 2)

− bGT
HS, ac(1, 4) qcyc(4, 3) vc(3, 5) qdyd(5, 6) GT

MF, db(6, 2),
(5.27)
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which can be rewritten under a matricial form as

G
¯

T
MF(1, 2)=G

¯
T
HS(1, 2) − bG

¯
T
HS(1, 3) v

¯
(3, 4) G

¯
T
MF(4, 2), (5.28)

where G
¯

T
MF(HS)(1, 2) denotes the matrix of elements GT

MF(HS), ab(1, 2) and
v
¯

(1, 2) that of elements vab(1, 2) (cf. Eq. (2.4)) The formal solution of
Eq. (5.28) is then

G
¯

T
MF(1, 2)=(1

¯
+b G

¯
T
HS f v

¯
)−1 f G

¯
T
HS, (5.29)

where 1
¯ab(1, 2)=dabd(1, 2) is the unit operator and the star ‘‘f’’ denotes

a convolution. One easily checks that GT
MF, ab and C1MF, ab as given by

Eqs. (5.29) and (5.22) respectively do satisfy the OZ equation (5.20).
In the case of a homogeneous system Eq. (5.29) can be simplified con-

siderably. Let us work in Fourier space where we have

G
¯
2 T

MF(k)=(U
¯

− P
¯
2(k))−1 · G

¯
2 T

HS(k), (5.30)

where U
¯ ab=dab is the unit matrix of rank M × M and P

¯
2(k) denotes the

matrix of elements

P2ab=−bṽc(k) G2 T
HS, ac(k) qcqb ỹc(k) ỹb(k) (no sum over b). (5.31)

P
¯
2(k) has the remarkable property that

P
¯
2 2(k)=−bṽc(k) G2 T

HS, C(k) P
¯
2(k), (5.32)

which leads us to search the inverse of U
¯

− P
¯
2(k) under the form

(U
¯

− P
¯
2(k))−1=U

¯
+m̃(k) P

¯
2(k). The identity (U

¯
+m̃(k) P

¯
2(k)) · (U

¯
− P

¯
2(k))=1

¯when combined with the property (5.32) implies that

m(k)=
1

1+bṽc(k) G2 T
HS, C(k)

. (5.33)

Therefore

(U
¯

− P
¯
2(k))−1=U

¯
+

P
¯
2(k)

1+bṽc(k) G2 T
HS, C(k)

, (5.34)

from which a simple expression for G2 T
MF, ab(k) is easily obtained

G2 T
MF, ab(k)=G2 T

HS, ab(k) −
bṽc(k) Ca(k) Cb(k)
1+bṽc(k) G2 T

HS, C(k)
, (5.35a)

Ca(k)=G2 T
HS, ac(k) qc ỹc(k). (5.35b)
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The expressions of the Fourier transforms of the usual pair correlations
hMF, ab can then be deduced from Eqs. (5.35). One finds

h̃MF, ab(k)=h̃HS, ab(k) −
Ca(k)

ra

Cb(k)
rb

bṽc(k)
1+bṽc(k) G2 T

HS, C(k)
. (5.36)

An important comment is in place here. As well known, the fact that
the direct correlation functions (5.23) behave as the Coulomb potential at
large distances is sufficient to ensure that the SL rules are satisfied. (1, 42)

Therefore, the hMF, ab(r), the Fourier transforms of which are given above,
automatically satisfy to the SL sum rules.

The two-point MF charge correlation is obtained by taking the con-
volution of the two members of Eq. (5.27) with qaqbya(1, 1Œ) yb(2, 2Œ) which
gives the equation

GT
MF, C(1, 2)=GT

HS, C(1, 2) − bGT
HS, C(1, 1Œ) vc(1Œ, 2Œ) GT

MF, C(2Œ, 2), (5.37)

the formal solution of which is

GT
MF, C=(1+bGT

HS, C f vc)−1 f GT
HS, C. (5.38)

Therefore, for a homogeneous system, the Fourier transform of GT
MF, C(r)

has the simple expression

G2 T
MF, C(k)=

k2G2 T
HS, C(k)

k2+4pbG2 T
HS, C(k)

. (5.39)

Finally the truncated pair correlation function of the KSSHE field is
obtained by using Eq. (3.29) which gives us

GT
MF, j(1, 2)=vc(1, 2) − bvc(1, 1Œ) GT

MF, C(1Œ, 2Œ) vc(2Œ, 2)

=(1+bGT
HS, C f vc)−1 (1, 1Œ) vc(1Œ, 2). (5.40)

For an homogeneous fluid, one thus has in Fourier space

G2 T
MF, j(k)=

4p

k2+4pbG2 T
HS, C(k)

. (5.41)

5.3.2. Application to the Special Primitive Model

In the SPM all the spheres have the same diameter sa=s and we also
assume that all the smearing distributions ya are identical with the same y.
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With these assumptions the functions G (n) T
HS, C are nearly decoupled of the

density correlations G (n) T
HS of the HS reference fluid. For instance one has

for n=2

G2 T
HS, C(k)=rMF, aq2

a ỹ2(k), (5.42)

which entails considerable simplifications. Indeed the MF pair correlation
functions take the simple form

h̃MF, ab(k)=h̃HS(k) −
4pbqaqb ỹ2(k)
k2+o2

MF ỹ2(k)
, (5.43)

where o2
MF=4pbrMF, aq2

a is the squared Debye number and hHS(r) the
truncated pair correlation function of the HS fluid at the density rMF=
; rMF, a. Equation (5.43) when combined with the electroneutrality condi-
tion implies that the correlations of the (total) density are equal to those of
the HS reference fluid which rules out a liquid-vapor transition of the SPM
at the MF level. Moreover the charge and KSSHE field correlations of the
SPM appear to be completely decoupled from the density fluctuations since
one finds

G2 T
MF, C(k)=

1
4pb

o2
MF ỹ2(k) k2

k2+ỹ2(k) o2
MF

, (5.44a)

G2 T
MF, j(k)=

4p

k2+ỹ2(k) o2
MF

. (5.44b)

5.4. The Mean Field Free Energy as an Exact Lower Bound of the

Free Energy

It can be shown, under quite general conditions, that the logarithm of
the grand-partition function log X[{ma}] is a convex functional of the local
chemical potentials even before the passage to the thermodynamic limit.
Similarly, the exact Kohn–Sham free energy bA[{ra}] is a convex func-
tional of the local densities. Moreover log X[{ma}] and A[{ra}] constitute
a pair of Legendre transforms which can be expressed as (25, 39, 40)

bA[{ra}]=sup
{na}

(Ora | naP− log X[{na}]), (5.45a)

log X[{na}]=sup
{ra}

(Ora | naP− bA[{ra}]). (5.45b)

Sine-Gordon Theory of Classical Hard-Core Coulomb Systems 1483



Recall that the Young inequalities which follow directly from Eqs. (5.45a)
and (5.45b) say that

bA[{ra}]+log X[{na}] \ Ora | naP (-{na}, -{ra}). (5.46)

We have seen in Section 5.2 that the MF functionals log XMF[{ma}] and
AMF[{ra}] are also two convex functionals linked by a Legendre trans-
form. We establish below some rigorous inequalities between the exact and
MF free energies and grand potentials which extend to ionic fluids results
recently obtained for neutral fluids. (27)

First, we notice that the fundamental Eq. (2.20) rewritten as

X[{na}]=Oexp(log XHS[{na+nS
a +ifa}])Pvc

(-{na}), (5.47)

can be inverted in order to give

XHS[{na}]=Oexp(log X[{na − nS
a +fa}])Pvc

(-{na}). (5.48)

Then, we apply Young inequality (5.46) to the RHS of Eq. (5.48) which
yields

XHS[{na}] \ exp(− bA[{ra}]+Ora | na − nS
aP) Oexp(Oj | jP)Pvc

(-{na}, -{ra}), (5.49)

where it follows from the definition (2.17) of the smeared field fa that

j(1)=b1/2qaya(1, 1Œ) ra(1Œ). (5.50)

The field average in the RHS of Eq. (5.49) is computed by making use of
Wick’s theorem which yields

Oexp(Oj | jP)Pvc
=exp 1b

2
OrC | vc |rCP2 . (5.51)

By inserting the above result into Eq. (5.49) we obtain

log XHS[{na}] \ − bA[{ra}]+Ora | na − nS
aP

+
b

2
OrC | vc |rCP (-{na}, -{ra}), (5.52)
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which implies

bA[{ra}] \ sup
{na}

[Ora | naP− log XHS[{na}]]

+
b

2
OrC | vc |rCP−Ora | nS

aP (-{ra}). (5.53)

The sup in the RHS of Eq. (5.53) is the Legendre transform of the exact
grand potential log XHS[{na}], i.e., the free energy bAHS[{ra}]. It follows
then from the expression (5.12) of bAMF that Eq. (5.53) may be recast
under the form

bA[{ra}] \ bAMF[{ra}] (-{ra}). (5.54)

Therefore the MF free energy bAMF[{ra}] is a rigorous lower bound of
the exact GC free energy bA[{ra}]. Moreover since bAMF and log XHS are
linked by a Legendre transform (see Eqs. (5.14a) and (5.14b)) we also have

log XMF[{na}]=sup
{ra}

[Ora | naP− bAMF[{ra}]] (-{na})

\ sup
{ra}

[Ora | naP− bA[{ra}]] (-{na}), (5.55)

which can be, with help of Eq. (5.45b), rewritten as

log XMF[{na}] \ log X[{na}] (-{na}). (5.56)

In other words log XMF[{na}] is a rigorous upper bound of the grand
potential log X[{na}]. Recall that, for a homogeneous system in the point-
like limit, the Debye–Hückel approximation for the pressure constitutes a
rigorous lower bound for the pressure (this result can also be proved with
the help of the sine-Gordon transform. (43)). Here, in the point-like limit the
upper bound bPMF — log XMF[{na}]/W diverges to +. since, in this limit
nS Q+., leaving us with a much less interesting result.

Let us specialize now to the homogeneous case. We denote by
bf({ra}) the exact free energy per unit volume of the system. It is bounded
from below by bfMF({ra}) and we have therefore

bf({ra}) \ bfHS({ra}) − ranS
a , (5.57)

where the electroneutrality condition rC=0 has been imposed. It follows
from Eq. (5.57) that the ‘‘best’’ or ‘‘optimized’’ MF free energy is obtained
by minimizing the functional K[{ya}]=ranS

a =braq2
awaa(0)/2 with respect
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to the variations of the smearing functions {ya(rF)}. Since these distribu-
tions are normalized to unity we introduce M Legendre parameters la and
define the functional

Ka[{ya}]=1
2 braq2

awaa(0) − laQa[ya]

Qa[ya]=F
r < s̄a

d3rF ya(rF).
(5.58)

Now, we minimize Ka[{ya}] for a given set of la. The constraints
Qa=1 (-a) will utimately serve to determine the values of the Legendre
parameters la. The conditions for an extremum of Ka are

dKa[{ya}]
dyc(rF)

=0 (-c ¥ (1,..., M), ||rF || [ s̄c). (5.59)

Since waa(r12) — waa(1, 2)=ya(1, 1Œ) ya(2, 2Œ) vc(1Œ, 2Œ) we have

dwaa(0)
dyc(rF)

=2dacVc(rF), (5.60)

where Vc is the electrostatic potential created by the charge distribution yc

(i.e., Vc(r12) — Vc(1, 2)=yc(1, 2Œ) vc(2Œ, 2)). The stationarity condition (5.59)
takes thus the form

Vc(rF)=lc (-c ¥ (1,..., M), ||rF || [ s̄c). (5.61)

The potential Vc created by the distribution yc must therefore be constant
inside the sphere of radius s̄a. From elementary electrostatics we conclude
that yc(rF) must be an uniform surface distribution of charge of radius s̄a.
In order to satisfy the constraint Qc=1 one must have

yc(rF)=d(||rF || − s̄c)
1

ps2
c

. (5.62)

Note that the solution (5.62) is indeed a minimum of Ka since its second
order functional derivative with respect to ya is the Coulomb potential
vc(1, 2) which is a positive operator. The simple form of the Fourier trans-
form of yc(rF) which is found to be

ỹc(k)=
sin(ks̄c)

ks̄c

(5.63)
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allows us to compute explicitly the pair potentials wab(r) as the inverse
Fourier transforms of the functions w̃ab(k)=4pỹa(k) ỹb(k)/k2 with the
result

r > s̄a+s̄b S wab(r)=
1
r

(5.64a)

s̄a − s̄b < r < s̄a+s̄b S wab(r)=
sa+sb − r

sasb

+
1
2r

−
1
4r

s2
a+s2

b

sasb

(5.64b)

0 < r < s̄a − s̄b S wab(r)=
2
sa

, (5.64c)

where it was assumed that sa \ sb. As a subproduct of these equations
we obtain the self-energies nS

a =bq2
a/sa and thus the expression of the

optimized MF free energy

bfMF({ra})=bfHS({ra}) −
bq2

a

sa

ra. (5.65)

Note that the corresponding excess internal energy per unit volume buMF=
“(bfMF)/“b=−braq2

a/sa coincides with the Onsager lower bound. (44) We
note that the MF approximation is thermodynamically inconsistent in the
sense that the MF energy uMF is obviously not equal to that which can be
obtained by the integration of gMF, ab(r) wab(r).

Reporting the expressions (5.64) of the pair potentials wab(r) in the
equations (5.18) one obtains the MF direct correlation functions. We shall
discuss only the case of the SPM where all the radii sa are equal to the
same s. In this case one finds

r > s S cMF, ab(r)=cHS(r) − bqaqb/r (5.66a)

0 < r < s S cMF, ab(r)=cHS(r) − bqaqb

2s − r
s2 , (5.66b)

where cHS(r) is the exact direct correlation function of the HS fluid at the
density r=;a ra. The expressions (5.66) of the cab are very similar to that
obtained in the framework of the MSA approximation, i.e., (42, 45)

r > s S cMSA, ab(r)=cPY
HS(r) − bqaqb/r (5.67a)

0 < r < s S cMSA, ab(r)=cPY
HS(r) − bqaqb

2Bs − B2r
s2 , (5.67b)
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where cPY
HS(r) denotes the direct correlation function of the HS fluid in the

Percus–Yevick approximation which is an excellent approximation of the
exact cHS(r) especially at low or moderate densities. (1) The main difference
between Eqs. (5.66) and. (5.67) is the occurrence of a parameter B in the
MSA solution. Clearly the MF and MSA solutions coincide for B=1.
Since we have (42, 45)

B=
o2s2

(os)2+os − os(1+2os)1/2 , (5.68)

where o is the Debye number, it happens only in the limit o Q .. For a
finite o, B(o) is positive and comprised between 0 and 1. Obviously the
electrostatic contribution to cMSA

ab (r) in the core (i.e., the second term in the
RHS of Eq. (5.67b)) may be seen as the interaction energy wab(r) of two
surface distributions of charge of equal radii s̄Œ=s̄/B. However, since
B < 1 S s̄Œ > s̄, this interaction energy is not equal to 1/r outside the core.
Consequently the MSA solution cannot be interpreted as a MF KSSHE
theory except in the limiting case B=1.

6. THE GAUSSIAN APPROXIMATION

6.1. The General Case

Let us define the Gaussian approximation of the KSSHE theory in the
following way. (20) We write j=j̄+dj where j̄ is the mean field solution
and dj a real scalar field and we expand functionally the action H[j]
(cf. Eq. (2.21)) up to second order in dj around the MF solution. In this
way the exact action H[j] is replaced by an approximate action HG[j]
given by

HG[j]=H[j̄]+1
2 Odj| D−1 |djP, (6.1)

where the terms linear in dj are absent as a consequence of the stationarity
condition (5.2), and the inverse of the propagator D is given by:

D−1(1, 2)=v−1
c (1, 2)+bGT

HS, C(1, 2). (6.2)

A comparison of Eq. (6.2) with Eq. (5.40) yields the expected result (20)

D(1, 2)=GT
MF, j(1, 2). (6.3)
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In the Gaussian approximation, the grand partition function is therefore
given by

XG[{na}]=exp(−H[j̄])
> Dj exp(− 1

2 Oj| D−1 |jP)
> Dj exp(− 1

2 Oj| v−1
c |jP)

. (6.4)

From now we specialize to the case of a homogeneous system for which an
explicit expression of XG can be obtained, i.e.,

XG[{na}]=exp(−H[j̄])
ND

Nvc

, (6.5)

where the normalization constants ND and Nvc
are defined according to

Eq. (2.13). A well known property of functional integrals of Gaussian
functionals gives us (20, 23, 24)

log
ND

Nvc

=
W

2
F d Kk log

D2(k)
ṽc(k)

= −
W

2
F d Kk log 11+

4pb

k2 G2 T
HS, C(k)2 . (6.6)

Taking the logarithm of Eq. (6.5) and taking into account the relation (6.6)
we thus obtain the pressure of the ionic solution at the Gaussian level:

bPG[{na}]=bPHS[{n̄a+ib1/2j̄}]

−
1
2

F d Kk log 11+
4pb

k2 qaqb ỹa(k) ỹb(k) G2 T
HS, ab(k)2 , (6.7)

where we have expanded the HS charge correlation function in oder to
make explicit the dependence of the result upon the smearing functions
ỹa(k). Note that the HS truncated pair correlation functions G2 T

HS, ab(k) must
be evaluated at the chemical potentials {n̄a+ib1/2j̄}. As a short examina-
tion reveals, the integral in the RHS of Eq. (6.7) is convergent at large k for
any reasonable smearing function ya (i.e., surface, volume distributions etc)
but diverges for point charge distributions ( ỹa(k)=1).

Some words on the field correlation functions at the Gaussian level.
Following Ma (20) we define

G (n)
G, j(1,..., n)=

> Dj exp(−HG[j]) j(1) · · · j(n)
> Dj exp(−HG[j])

(6.8)
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which entails the relations

OdjPHG
=0, (6.9a)

G (2) T
G, j (1, 2)=D(1, 2) — G (2) T

MF, j(1, 2), (6.9b)

G (n) T
G, j (1,..., n)=0 for n \ 3. (6.9c)

In particular, Eq. (6.9a) says that the number densities in the Gaussian
approximation coincide with their MF values. The Legendre transform of
bPG is therefore easily obtained and reads as

bfG[{ra}]=bfHS[{ra}] − ranS
a +

1
2

F d Kk log 11+
4pb

k2 G2 T
HS, C(k)2 ,

(6.10)

where the truncated charge correlation function GT
HS, C of the reference HS

fluid must be evaluated at the densities {ra}. Replacing the self energy nS
a

by its expression (2.6), bfG can be recast under the form

bfG[{ra}]=bfHS[{ra}]+
b

2
rarbqaqb F d3rF hHS, ab(r) wab(r)

+
1
2

F d Kk 3 log 11+
4pb

k2 G2 T
HS, C(k)2−

4pb

k2 G2 T
HS, C(k)4 .

(6.11)

As in the case of neutral fluids, (27) the expression (6.11) of the free
energy at the Gaussian level can be shown (22) to coincide with that obtained
in the framework of the random phase approximation (RPA) of the theory
of liquids. (1, 21, 38)

It must be stressed that in the RPA the pair potential vab between two
ions is arbitrary in the core (i.e., for 0 < r < s̄a+s̄b ). In the optimized RPA
(ORPA) the pair potentials in the core are chosen in such a way to ensure
that the radial pair correlations gORPA, ab(r) vanish for 0 < r < s̄a+s̄b. (21)

Chandler and Andersen have shown that this condition corresponds to an
extremum of bfRPA considered as a functional of the core potentials. There
is no analytical solution to this variational problem as far as the author
knows, and the solution must be seeked numerically. It is however quite
certain that this solution cannot be interpreted as the interaction of two
smeared charges as suggested by the discussion on the MSA integral equa-
tion of Section 5.4 (the MSA is identical with the ORPA if the HS refer-
ence fluid is described in the framework of the PY theory). Therefore, with
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smeared electrostatic potentials one can never ensure that the gG, ab(r)
vanish in the core.

6.2. The SPM

We conclude this section by specializing to the case of the SPM. In this
model all the hard spheres have the same diameter s and all the smearing
distributions ya are equal to the same y. It follows from the expression
(5.42) of G (2) T

HS, C that the Gaussian free energy of the SPM takes then the
very simple form:

bfG[{ra}]=bfHS[{ra}]+
1
2

F d Kk 3 log 11+
o2

k2 ỹ2(k)2−
o2

k2 ỹ2(k)4 .

(6.12)

Several comments on Eq. (6.12) are in order at this point.

(a) As it is well known, (38) and as a direct calculation will show,
Eq. (6.12) reduces to the Debye–Hückel free energy bfDH=bfHS − o3/12p

in the limit of point-like distributions (i.e., when ỹ(k)=1 for all k). Recall
that in the point-like limit, the MF free energy diverges. Therefore the first
order term in the loopwise expansion of the free energy makes the final
result finite.

(b) The expression (6.12) shows no sign of a hidden ‘‘RPA catas-
trophe’’ (47) which would be the case if the argument of the logarithm
happened to be negative for some k. This happy circumstance is a conse-
quence of the regularization by ‘‘smearing’’ of the Coulomb potential
which was adopted in this paper. Other types of regularization can how-
ever lead to such a RPA catastrophe. For instance, adopting the Weeks–
Chandler–Andersen (WCA) recipe (48) one could set the potential constant
in the core, i.e., vab(r)=qaqb/s for 0 < r < s. Clearly, one has in fact
vab(r)=qaqbw(r) (-r) where w(r) can be interpreted as the electric poten-
tial created by the surface distribution of charge yS(r)=d(r − s̄)/ps2. Thus
w(1, 2)=yS(1, 1Œ) vc(1Œ, 2). As a consequence, one must replace the term
ỹ2(k) by ỹS(k)=sin(ks̄)/ks̄ (not squared) in Eq. (6.12), with the annoying
consequence that the argument of the log can become negative for some k
yielding a ‘‘RPA catastrophe.’’ The mathematical origin of this catastrophe
is that, within the WCA framework, the energy is not a positive definite
quadratic form and the KSSHE transform is ill-defined. It has been
suggested that this instability of the RPA theory could possibly be related
to the order-disorder transition of the lattice-version of the RPM. (30, 49)

Note that this transition is not present in the continuous version of the
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model although the RPA catastrophe for the WCA-RPA free energy is still
there. In all cases, one cannot be comfortable with a theory the ability of
which to predict a possible transition depends on the way the regularization
of the interaction is performed.

7. A TWO-LOOP ORDER CALCULATION

7.1. The Cumulant Expansion

We adopt the same decomposition j=j̄+dj of the KSSHE field as
that considered in the section on the Gaussian approximation but, this
time, we do not truncate the action at the second order in dj and consider
rather the full functional Taylor expansion of H[j] about the saddle point

H[j]=H[j̄]+
1
2
Odj| D−1

j̄ |djP+DH[dj], (7.1a)

DH[dj]= C
.

n=3

1
n!

H (n)[j̄](1,..., n) dj(1) · · · dj(n), (7.1b)

where the free propagator Dj̄ defined at Eq. (6.2) must be evaluated at the
saddle point j̄ and the integral kernels are given by

H (n)[j̄](1,..., n)= − (ib1/2)n qa1
· · · qan

ya1
(1, 1Œ) · · · yan

(n, nŒ)

× G (n) T
HS, a1 · · · an

[{n̄a+if̄a}](1Œ,..., nŒ),

— − (ib1/2)n G (n) T
HS, C[j̄](1,..., n). (7.2)

With these notations, the grand partition function can be recast under the
form

X[{na}]=exp(−H[j̄])
NDj̄

Nvc

Oexp(− DH[dj])PDj̄
, (7.3)

yielding the cumulant expansion (20, 50, 51)

log X=−H[j̄]+log
NDj̄

Nvc

−ODHPDj̄
+

1
2!

ODH2PT
Dj̄

−
1
3!

ODH3PT
Dj̄

+ · · · .
(7.4)

The two first terms in the RHS of Eq. (7.4) correspond the MF and
Gaussian approximations respectively, the other terms are Gaussian
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averages which can be computed with the help of Wick’s theorem. Reor-
dering these additional terms in powers of some small parameter yields
various types of expansions. Low fugacity and high temperature expan-
sions of the pressure and the free energy of the RPM where obtained in this
way in papers I and II, yielding to a rediscovery of old results derived years
ago by Mayer graphs expansion technics. (13, 14) In both cases the ‘‘small
parameter’’ has a physical origin and thus each order of the expansion
should be independent of the pair potentials in the core and therefore
of the smearing functions ya. This point was checked carefully in I and II
for the RPM by considering surface distributions of radius ā < s̄ and by
showing that the first terms of the fugacity and temperature expansions
were indeed independent of ā.

Here we consider a loopwise expansion. The small parameter l of this
expansion is defined by rewriting (50, 51)

dj Q l1/2 dj,

H[j] Q

1
l
H[j̄+l1/2 dj],

log X Q l log X.

(7.5)

An expansion of Eq. (7.4) in powers of l yields the loopwise expansion of
log X; at the end of the calculation one set l=1. The ‘‘small’’ parameter
l (— (!!) is not a physical parameter but serves mainly to keep track of
different classes of Feynman diagrams; therefore each term of the loop
expansion can a priori depend on the smearing functions ya. One can only
hope that the larger the number of terms is retained in the expansion the
‘‘smaller’’ this dependence will be. In a sense, the fact that the MF free
energy diverges for point charge distributions but remains finite in the
Gaussian (one-loop) approximation confirms this hope. Henceforth we
shall retain for ya the distributions (5.63) which lead to the best MF free
energy. Finally, we note that it follows from Eqs. (2.20), (2.17), and (7.5)
that a high-temperature expansion of the loop-expansion of log X at order
lk obviously yields the correct high-temperature expansion of log X at
order bk.

7.2. The Two-Loop Expansion of log X

The loop expansion of log X for the general Hamiltonian (7.1) can be
found in the literature. (50, 51) Taking into account the form (7.2) of the
kernels H (n) one finds, at the two-loop order
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log X[{na}]=log XMF[{na}]+l log
NDj̄

Nvc

+
l2b2

8
G (4) T

HS, C[j̄](1, 2, 3, 4) Dj̄(1, 2) Dj̄(3, 4) (— Da)

−
l2b3

8
G (3) T

HS, C[j̄](X1, X2, X3) G (3) T
HS, C[j̄](Y1, Y2, Y3)

× Dj̄(X1, X2) Dj̄(Y1, Y2) Dj̄(X3, Y3) (— Db)

−
l2b3

12
G (3) T

HS, C[j̄](X1, X2, X3) G (3) T
HS, C[j̄](Y1, Y2, Y3)

× Dj̄(X1, Y1) Dj̄(X2, Y2) Dj̄(X3, Y3) (— Dc)

+O(l3), (7.6)

where the diagrams corresponding to the two-loop order terms of the RHS
of Eq. (7.6) have been sketched in Fig. 1.

Some remarks. In general the loop-expansion (7.6) does not converge
notably in the critical region as a consequence of the singular behavior of
the correlation functions. (50, 51) Here however, we deal with a noncritical
field j the correlation functions of which were shown to be short range in
Section 4; Eq. (7.6) is thus expected to be an asymptotic expansion. The
second remark is that the expression (7.6) is horribly intricate in the general
case since, a priori, it involves the 2, 3-body and 4-body density correlation
functions of the reference HS fluid. However it turns out that Eq. (7.6) can
be considerably simplified for the SPM since, in this case, only the 2-body
correlation functions survive, yielding tractable expressions.

Before specializing to the case of the SPM let us introduce some nota-
tions. All the thermodynamic quantities of interest will be expanded in
powers of l. We shall note, for intance for the density of species a

ra= C
.

n=0
lnr (n)

a , (7.7)

with, of course r (0)
a — rMF, a=rHS, a[{n̄a+iqaj̄}]. As it is well known, the

two-loop order expansion of the free energy requires the densities at the

ca bD D D

Fig. 1. Two-loop diagrams contributing to log X. The lines represent the bare propagator Dj̄.
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one-loop order only. (50, 51) We have checked in the general case that the one-
loop order correction to the densities preserves the electroneutrality; the
detailed calculation can be found in ref. 22.

Henceforth we consider only the homogeneous SPM. All the ions have
the same diameter s and all the smearing functions are equal to ỹ(k)=
sin(ks̄)/ks̄. With this assumption the charge neutrality condition at the
MF level (r (0)

C =0) kills most of the terms involved in the expressions of
G (n) T

HS, C[j̄], it is easy to show that the only surviving terms are (22)

G (2) T
HS, C[j̄](1, 2)=r (0)

a q2
a y(1, 1Œ) y(2, 1Œ) (— D2)

G (3) T
HS, C[j̄](1, 2, 3)=r (0)

a q3
a y(1, 1Œ) y(2, 1Œ) y(3, 1Œ) (— D3)

G (4) T
HS, C[j̄](1, 2, 3, 4)=r (0)

a q4
a y(1, 1Œ) y(2, 1Œ) y(3, 1Œ) y(4, 1Œ) (— D4a)

+(r (0)
a q2

a)2

× {y(1, 1Œ) y(2, 1Œ) hHS(1Œ, 2Œ) y(2Œ, 4) y(2Œ, 3) (— D4b)

+y(1, 1Œ) y(3, 1Œ) hHS(1Œ, 2Œ) y(2Œ, 4) y(2Œ, 2) (— D4c)

+y(1, 1Œ) y(4, 1Œ) hHS(1Œ, 2Œ) y(2Œ, 2) y(2Œ, 3) (— D4d)},

(7.8)

where hHS(r) — gHS(r) − 1 is the pair distribution of the reference HS fluid
at the total MF density r (0)=;a r (0)

a . Diagrammatic representations of the
various terms of the RHS of Eq. (7.8) have been sketched in Fig. 2.

Replacing either algebraically or graphically the kernels G (n) T
HS, C[j̄] by

their expressions (7.8) in Eq. (7.6) yields the expression for the pressure
bP=log X/W at the two-loop order, i.e., P=P(0)+lP (1)+l2P (2)+O(l3)
with of course

bP (0)[{na}]=bPMF[{na}], (7.9)

D DD

D D D

1 2

1

4d

3

1 2

3 4

1 3

2 4

1 2

3 4

1 3

4 2

2

2 4a

4b 4c

3

Fig. 2. Diagrams representing G (n) T
HS, C (n=2, 3, 4). Dashed lines represent hHS(1, 2) and solid

lines the smearing function y(1, 2).
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and

bP (1)[{na}]=−
1
2

F d Kk log 11+
o (0) 2

k2 ỹ2(k)2 , (7.10)

(where o (0) 2 — o2
MF=4pbr (0)

a q2
a is the squared Debye number at the 0-loop

order) as we already know, and

bP (2)[{na}]=
b2

8
3r (0)

a q4
a [D (0)

y (0)]2 (— D1)

+[D (0)
y (0)]2 [r (0)

a q2
a]2 F d3rF hHS(r) (— D2)

+2[r (0)
a q2

a]2 F d3rF hHS(r)[D (0)
y (r)]2 (— D3)4

−
b3

8
[r (0)

a q3
a]2 [D (0)

y (0)]2 D2 (0)
y (0) (— D4)

−
b3

12
[r (0)

a q3
a]2 F d3rF [D (0)

y (r)]3 (— D5), (7.11)

where the ‘‘smeared’’ propagator D (0)
y which enters the RHS of Eq. (7.11) is

given by the convolution

D (0)
y (1, 2)=y(1, 1Œ) Dj̄(1Œ, 2Œ) y(2Œ, 2) (7.12)

or, in Fourier space

D2 (0)
y (k)=

4pỹ2(k)
k2+o (0) 2 ỹ2(k)

. (7.13)

We have already met the function D (0)
y (r) (under the name Xy(r)) in papers

I and II. Recall its high temperature, or low o (0), behavior

r [ s S D (0)
y (r)=

2
s

−
r

s2 − o (0)+O(o (0) 2), (7.14a)

r \ s S D (0)
y (r)=

sinh2(o (0)s̄)
(o (0)s̄)2

exp(−o (0)r)
r

+O(o (0) 2). (7.14b)

Diagrammatic representations of the various terms of the RHS of
Eq. (7.11) have been sketched in Fig. 3.
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2

D D

D D

1

3 D5

1 2

1

2

4

Fig. 3. Two-loop diagrams contributing to the pressure (cf. Eq. (7.11)). The smeared pro-
pagator D (0)

y (1, 2) has been represented by a solid line plus a slash. As for the diagrams of
Fig. 2 the dashed lines represent hHS(1, 2).

7.3. The Two-Loop Expansion of the Free Energy

As it is well known from statistical field theory, the reducible diagram
Db of Fig. 1 should disappear after a Legendre transform of the pressure
yielding a simple expression for the free energy. (50, 51) However in statistical
field theory one is interested with the Legendre transform of bP with
respect to the mean value of the field OjPH; by contrast, in our case, the
quantity of interest is rather the Helmoltz free energy bf defined as the
Legendre Transform of the pressure with respect to the M densities ra

(cf. Eqs. (5.45a) and (5.45b)). These two Legendre transforms do not
coincide a priori and a direct calculation of bf at the two-loop order is
therefore necessary.

We have first to compute the densities at the one-loop order since the
terms l2r (2)

a and of higher order do not contribute to bf at order O(l2)
(included) as a consequence of the stationarity condition (this point will
emerge in subsequent developments). Equations (7.9) and (7.10) entail that

ra=
“bP[{na}]

“na

=r (0)
a −

l

2
D (0)

y (0)
4p

“o (0) 2

“na

+O(l2), (7.15)

where we recall that r0
a=rHS, a[{n̄a+ib1/2qaj̄}] is the 0-loop order (or MF)

density of species a. We note that

“o (0) 2

“na

=4pb q2
c (“r (0)

c /“na)=4pb q2
c G2 T

MF, ac(k=0), (7.16)
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where G2 T
MF, ac can be computed from Eq. (5.43). After some algebra one

finds finally

r (1)
a =−

bDy(0)
2

1[r (0)
c q2

c ] h̃HS(0) r (0)
a +r (0)

a q2
a −

[r (0)
c q3

c ]
[r (0)

c q2
c ]

r (0)
a qa

2 . (7.17)

(no summation over a in the RHS). We have already pointed out that the
electroneutrality is satisfied at the MF level (i.e., r (0)

a qa=0) and we note
with satisfaction that Eq. (7.17) implies that it is also satisfied at the one-
loop order (i.e., r (1)

a qa=0; see also ref. 22 for a thorough treatment in the
general case). As a subproduct of Eq. (7.17) we obtain the one-loop order
corrections to the total density and Debye number

r (1)= −
bD (0)

y (0)
2

[r (0)
c q2

c ](1+r (0)h̃HS(0)) (7.18a)

o2 (1) — 4pbr (1)
a q2

a

= − 2pb2D (0)
y (0) 1[r (0)

c q2
c ]2 h̃HS(0)+[r (0)

c q4
c ] −

[r (0)
c q3

c ]2

[r (0)
c q2

c ]
2 . (7.18b)

The free energy at the two-loop order is obtained by reexpressing

bf=rana − bP (0) − lbP (1) − l2bP (2)+O(l3) (7.19)

in terms of the densities

ra=r (0)
a +Dra

Dra=lr (1)
a +l2r (2)

a +O(l3). (7.20)

Let us first evaluate

rana − bP (0)[{na}]=bf (0)[{r (0)
a }]+na Dra. (7.21)

We have already obtained the leading term of bf (i.e., at the MF or 0-loop
order) in sec (5.2) as a functions of the densities, i.e., for the homogeneous
system considered here

bf (0)[{ra}] — bfMF[{ra}]=bfHS[{ra}] − ranS
a . (7.22)

At this point we remark that

bf (0)[{ra+Dra}]=bf (0)[{ra}]+na Dra −
1

2W
ODra | C1 (0)

ab |DrbP+O(l3),
(7.23)
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where C1 (0)
ab is the two-body MF proper vertex. In the case of the SPM the

expression (5.22) of C1 (0)
ab takes the form

C1 (0)
ab (1, 2)=c(0)

HS(r12) −
dab

r (0)
a

d(1, 2), (7.24)

where c (0)
HS is the usual direct correlation function of the HS fluid at the

density r (0). Reporting the expression (7.24) of C1 (0)
ab in Eq. (7.23) and taking

into account the electroneutrality condition at the MF level one finds

bf (0)[{ra+Dra}]=bf (0)[{ra}]+na Dra −
l2

2
c̃ (0)

HS(0) r (1) 2

+
l2

2
C
a

r (1) 2
a

r (0)
a

+O(l3). (7.25)

Reporting now the expression (7.17) of r (1)
a in the above equation one

obtains

bf (0)[{ra+Dra}]

=bf (0)[{ra}]+na Dra

+
l2b2

8
D (0) 2

y (0) 3[r (0)
a q2

a]2 h̃ (0)
HS(0)+r (0)

a q4
a −

[r (0)
a q3

a]2

r (0)
a q2

a

4+O(l3),
(7.26)

where we have made use of the OZ equation for the reference HS fluid
c̃ (0)

HS(0)=h̃ (0)
HS(0)/(1+r (0)h̃ (0)

HS(0)). The first contribution (7.21) of bf can
thus be recast under the form

rana − bP (0)[{na}]=bf (0)[{ra}]

−
l2b2

8
D2

y (0) 3[raq2
a]2 h̃HS(0)+raq4

a −
[raq3

a]2

raq2
a

4+O(l3),

(7.27)

where the smeared propagator Dy as well as the pair correlation hHS of the
HS fluid can be evaluated at the total density r=;a ra (rather than r (0))
at this order in l.

The second step in the calculation of bf is to reexpress bP (1) in terms
of the densities ra. We note that

lbP (1)=−
l

2
F d Kk log 11+

o (0) 2

k2 ỹ2(k)2 (7.28)
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which shows that bP (1) is a function of the sole squared Debye number o2.
Defining the increment Do2=o2 − o (0) 2 and performing a Taylor expansion
of bP (1) around o (0) 2 yields

lbP (1)=−
l

2
F d Kk log 11+

o2

k2 ỹ2(k)2+
l

8p
Dy(0) Do2+O(l3), (7.29)

which, after substitution of the expression of Do2 at order O(l) (cf.
Eq. (7.18b) allows us to write

lbP (1)= −
l

2
F d Kk log(1+

o2

k2 ỹ2(k))

−
l2b2

4
D2

y (0) 3[raq2
a]2 h̃HS(0)+raq4

a −
[raq3

a]2

raq2
a

4+O(l3), (7.30)

where, once again, the smeared propagator Dy as well as the pair correla-
tion hHS of the HS fluid can be evaluated at the total density r=;a ra

(rather than r (0)) at this order in l.
It remains to reexpress bP (2) in terms of the densities ra, which is done

readily, and to gather all the intermediate results. After doing this job, one
finds that the free energy at the second order in the loop expansion reads as

bf[{ra}]=bfHS[{ra}]+
1
2

F d Kk 1 log 11+
o2

k2 ỹ2(k)2−
o2

k2 ỹ2(k)2

−
b2

4
[raq2

a]2 F d3rF hHS, r(r) D2
y, o(r)

+
b3

12
[raq3

a]2 F d3rF D3
y, o(r), (7.31)

where a subscript r has been added to the function hHS, r(r) to emphasize
that it has to be computed at the density r=;a ra. There are good
theories for the HS pair correlations hHS(r), for instance one could try
hHS(r)=hPY(r), which makes the two-loop expression for the free energy
manageable. Similarly the smeared propagator in the RHS of Eq. (7.31)
must be computed from (7.13) with o2=4pbraq2

a.
Several comment are in order at this point.

(a) We note that only the irreducible diagrams D3 and D5 of Fig. 3
have survived to the Legendre transform; note that, moreover, the symme-
try factor of D3 has changed as the result of many compensations of equal
terms. Diagram D3 is interesting because it can be interpreted as the
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contribution of an effective attractive interaction − D2
y, o(r) to the free

energy. Such a term should play an important role in the description of the
liquid-vapor transition of the SPM.

(b) Digging the literature we have found that the expression (7.31)
when specialized to the case of the RPM (i.e., with the last term of the right
hand side set to zero) is not new and has been obtained more than thirty
years ago by Chandler and Andersen (15) in the framework of the mode
expansion formalism. According to the numerical study performed by these
authors Eq. (7.31) gives reasonable results in the liquid regime.

(c) Recent developments of the theory of collective variables (in its
modern formulation (52, 53)) yield, in the case of the RPM, to an expression
for bf that disagrees with Eq. (7.31). As far as I understand the details of
ref. 49 one can reconciliate the two points of view by replacing hHS, r(r) by
its Fourier transform at k=0 in Eq. (7.31). This approximation is correct if
the correlation length associated to charge fluctuations (i.e., tC ’ 1/o) is
large compared to the correlation length associated with the HS fluid which
does not seem to be fully justified in general.

(d) We have checked in the case of the RPM that, expanding the
expression (7.31) of bf in powers of b with the help of Eq. (7.14) gives
back the high-T expansion discussed in ref. 3, i.e., in reduced units
(x=r/s, bg=bq2/s, and rg=rs3)

bgfRPM(rg)=bgfHS(rg) − rg log 2 −
2p1/2

3
(rgbg)3/2

−
(rgbg)2

4
F d3xF

hHS, rg(x)
x2

+p1/2(rgbg)5/2 F d3xF
hHS, rg(x)

x
+O(bg 3). (7.32)

This result corroborates the conclusions of Stell in his study of the relation
between the c-ordering and the mode expansion. (54)

8. CONCLUSION

The KSSHE field theoretical representation of liquids provides a
general framework for studying either neutral atomic liquids (27) or ionic
solutions, as in this series of papers. It is taylor made for building pertur-
bation theories with respect to a reference fluid chosen conveniently in
general as the HS fluid. The technics is roughly always the same, i.e., an
ordering of the cumulant expansion of the grand potential in ascending
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powers of some small parameter. The latter can be either a physical
parameter such as the fugacity or the inverse temperature as considered in
papers I and II or, as in the present work, an abstract one related to the
numbers of loops of the Feynman diagrams retained in the expansion. The
salient features of this loop expansion can be summarized as follows.

• The zero-loop order approximation of the free energy bAMF consti-
tutes a rigorous lower bound for the exact GC free energy bA. An
optimized MF theory can be obtained by maximizing bAMF with respect to
the smearing distribution functions in the cores. The MF grand potential
log XMF constitutes a rigorous upper bound for the exact grand potential.
Both functionals bAMF[{ra}] and log XMF[{na}] are strictly convex in the
fluid phase which rules out a fluid–fluid phase transition at the MF level.

• At the MF level (or in the Gaussian approximation) the pair corre-
lation functions coincide with those of the RPA theory. The direct correla-
tion functions of the PM in the optimized MF theory are very similar to
those considered in the ORPA (or MSA) approximation of the theory of
liquids, however the pair correlation functions gMF, ab(r), which have simple
analytical expressions, do not vanish in the cores, except in limit cases.

• The one-loop free energy is identical with that obtained in the RPA
theory of liquids. (1, 21, 38)

• An explicit and manageable expression of the two-loop order free
energy can be written for the SPM; in the case of the RPM it coincides with
a result obtained by Chandler and Andersen in the framework of the mode
expansion theory. (15) However the expression (7.11) of the pressure seems
to be a new result even for the RPM.

The homogeneous specific free energy bf of the PM can be used to
study the critical point (CP) of the PM at the MF level. Recently, the one-
loop order expression of bf in the WCA scheme was considered to study
the CP of the RPM. (30, 49) We have performed a similar study for the SPM
with the one- and two-loop order expressions of bf derived in this paper.
These results will be discussed elsewhere.
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